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Research report:  

1. Research purpose 

As δ-(Al,Fe)OOH is considered to be one of the most important hydrous phases on Earth, 

remaining stable under the extreme conditions throughout the mantle (Duan et al., 2018). The 

presence of δ-(Al,Fe)OOH may strikingly affects the physical properties of Earth’s interior, including 

melting, thermal and electrical conductivity, elasticity, and phase transition (Hsieh et al., 2020; Liu et 

al., 2017; Mashino et al., 2016; Ohira et al., 2021; Ohtani, 2005; Satta et al., 2021; Su et al., 2023; Su 

et al., 2021). To date, it still remains unclear how the presence of iron and temperature affect its 

stability and elastic properties at extreme conditions, especially across the spin crossover. Therefore, 

the purpose of research is to clarify how the presence of iron and temperature affect the stability 



and elastic properties of δ-(Al,Fe)OOH at extreme conditions, especially across the spin 

crossover. 

 

2. Conducted research 

2.1 Raman spectra of δ-(Al,Fe)OOH were measured at high temperatures and pressures up to 650 

K and 62 GPa; 

2.2 Single crystal XRD of δ-(Al0.85Fe0.15)OOH at high temperatures and pressures was performed 

up to 900 K and 58 GPa. 

 

3. Research outcomes 

3.1 The vibrational properties and/or spin transition of δ-(Al,Fe)OOH analyzed by Raman  

spectroscopy up to 62 GPa and 650 K 

The Raman spectra of δ-AlOOH were measured at high pressure up to 51 GPa and 300 K using Ar 

as a pressure transmitting medium (Figure 1). The pressure dependence of the Raman shifts decreases 

at ~6 GPa, which should be attributed to the symmetrization of hydrogen bonds (Kuribayashi et al., 

2014; Mashino et al., 2016; Sano-Furukawa et al., 2009). Similarly, the onset pressure of hydrogen 

bonds symmetrization is ~6.5 GPa for δ-(Al0.85Fe0.15)OOH (Figure 2). Moreover, the spin crossover 

of δ-(Al0.85Fe0.15)OOH is 33.4(17)-37.9(8) GPa determined by the new occurred Raman mode and 

pressure dependence of the Raman shifts (Figure 2). Representative Raman spectra and shifts of δ-

(Al0.85Fe0.15)OOH with increasing pressure at 300 and 500 K using neon (Ne) as a pressure 

transmitting medium are shown in Figure 3. The spin crossover of δ-(Al0.85Fe0.15)OOH is 38.1(8)-

42.7(7) GPa at 500 K. The onset spin crossover pressure at 500 K is about 5 GPa higher than that of 

300 K. Further results at higher temperatures are being collected and analyzed. 



 

Figure 1. Representative Raman spectra and shifts of δ-AlOOH with increasing pressure. The dashed 

line represents the onset pressure of hydrogen bonds symmetrization.  

 

Figure 2. Representative Raman spectra and shifts of δ-(Al0.85Fe0.15)OOH with increasing pressure. 

The dashed line represents the onset pressure of hydrogen bonds symmetrization and spin transition 

of iron, respectively.  

 

Figure 3. Representative Raman spectra and shifts of δ-(Al0.85Fe0.15)OOH with increasing pressure 

at 300 and 500 K using Ne as a pressure transmitting medium.  



3.2 The unit cell parameters of δ-(Al0.85Fe0.15)OOH determined by single crystal XRD up  

to 58 GPa and 900 K 

Representative XRD spectra and unit cell parameters of δ-(Al0.85Fe0.15)OOH with increasing 

pressure at 300 K are depicted in Figure 4. The pressure of the symmetrization of hydrogen bonds is 

~8 GPa determined by single crystal XRD, which is ~2 GPa lower than previous study (Ohira et al., 

2019). Moreover, the spin crossover of δ-(Al0.85Fe0.15)OOH is 32-35 GPa, which is almost consistent 

with the results of 32-40 GPa (Ohira et al., 2019). The spin crossover range shifts to ~38-42 GPa at 

500 K (Figure 5). 

 

Figure 4. Representative XRD spectra of and unit cell parameters of δ-(Al0.85Fe0.15)OOH with 

increasing pressure at 300 K. 

 
Figure 5. The unit cell parameters of δ-(Al0.85Fe0.15)OOH with increasing pressure at 300 and 500 

K.  
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