Report for the Joint Use/Research of the Institute for Planetary Materials, Okayama University for FY2023

May/27/2024

Category: ☑International Joint Research □General Joint Research □Joint Use of Facility □Workshop

Name of the research project: Determination of the Al₂O₃ solubility in MgSiO₃ bridgmanite **Principal applicant:** Tomoo Katsura

Affiliated institution and department: Bayerisches Geoinstitut, University of Bayreuth

Collaborator

Name: Daisuke Yamazaki¹, Artem Chanyshev², Fei Wang², Naira Martirosyan², Noriyoshi Tsujino

³, Guoliang Niu ⁴, Peiyang Mu⁴.

Affiliated institution and department:

- 1: Institute for Planetary Materials, Okayama University
- 2: Bayerisches Geoinstitut, University of Bayreuth
- 3: Japan Synchrotron Radiation Institute
- 4: Center for High Pressure Science and Technology Advanced Research

Research report:

In 2023 fiscal year we had 2 beamtimes at SPring-8 in collaboration between Bayerisches Geoinstitut, (University of Bayreuth, Germany) and Institute for Planetary Materials (Okayama University, Japan). The aim of these beamtimes was to investigate solubility of Al₂O₃ in MgSiO3 bridgmanite coexisting with corundum as a function of pressure at 2000 K. Here we report the results of the beamtimes:

Beamtime #1 (19.06.2023-24.06.2023).

We conducted 5 experiments using SD anvils and 2 experiments using WC anvils (Table 1). Figures 1 and 2 show the cell assembly designs. In all experiments we used Cr₂O₃-doped MgO octahedral as a pressure medium, cylindrical CVD BDD heater, and TiC electrodes. Temperature was measured using D-type thermocouple. Combination of Mo + Cu electrodes was used for experiments with SD anvils. A fine-grained oxide mixture of composition En₅₀Cor₅₀ (En: MgSiO₃, Cor: Al₂O₃; the number represents mol %, oxide grain size: 50 nm) was used as a starting material. MgO + Pt (10:1 wt. %) oxide mixture was used as a pressure marker.

For experiments with SD anvils, the experimental procedure can be described as follows: the

sample was successively compressed up to 0.5, 1.0, 1.5, 2.0, 2.5, 3.1, 3.8, 4.6, 5.5, 6.5, 7.6 MN. The compression duration between these steps was 40 minutes. At each step, the sample was heated to 1000 K and then cooled to 300 K. Before heating, at 1000 K, and after cooling sample diffraction was taken and pressure was calculated. This procedure was applied to reduce the possibility of a blowout during compression. At target pressload (7.6 MN), sample was heated to \approx 2250 K. However, only in M4031 experiment, sample was successfully heated to target temperature (Table 1). At \approx 2250 K sample pressure was determined as 55.7(2) GPa. After 30 min explosion at these conditions, the sample was quenched and then decompressed to ambient pressure. After quenching, sample diffraction was taken (Figure 3).

The experimental procedure for experiments with WC anvils is different. In M4035 experiment, sample was successively compressed to 2.5, 5.0 and 15.0 MN. At 2.5 and 5.0 MN, the sample was heated to 800 K and then cooled to 300 K. Before heating, at 1000 K, and after cooling sample diffraction was taken and pressure was calculated. This procedure was applied to reduce the possibility of a blowout during compression. In M4036 experiment, sample was compressed directly to 15.0 MN. At target pressload (15.0 MN), sample was heated to 2300 K. However, only in M4035 experiment, sample was successfully heated to target temperature (Table 1). At 3000 K sample pressure was determined as 48.7(2) GPa. After 60 min explosion at these conditions, the sample was quenched and then decompressed to ambient pressure. After quenching, sample diffraction was taken (Figure 3).

Figure 1. 4.05/1.0 experimental assembly

Figure 3. XRD of samples after quenching in experiments M4031 (bottom) and M4035 (top). The numbers above the peaks indicate the Miller indexes of bridgmanite, corundum, stishovite and periclase.

Run #	Electrode	Anvils	Assembly	Maximum	Number of	Highest P,	Highest T,	remarks
	material			pressload,	heating	Gpa	К	
				MN	cycles			
M4030	Mo+Cu	SD	4.05/1.0	0.7	1	9.9	1000	Blowout at 0.7 MN occurred during
								compression
M4031	Mo+Cu	SD	4.05/1.0	7.6	11	55.7(2)	2250	Kept at 2250 K in 30 minutes. Blowout
								during decompression; 6 SD anvils
								were broken.
M4032	Mo+Cu	SD	4.05/1.0	0.7	1	9.2	1000	Blowout at 0.7 MN occurred during
								compression
M4033	Mo+Cu	SD	4.05/1.0	0.85	1	8.3	900	Blowout at 0.85 MN occurred during
								compression
M4034	Mo+Cu	SD	4.05/1.0	0.5	1	9.7	≈1000	Experiment was terminated due to TC
								breakage during heating at 0.5 MN
M4035		WC	5.24/1.0	15	3	48.7(2)	2300	Kept at 2300 K in 60 minutes. Blowout
								during decompression; all anvils were
								broken. The sample was destroyed by
								blowout.
M4036		WC	4.05/1.0	15	1	43.1	300	At 15 MN heating was failed due to low
								resistance of the heater (≈ 0.003 Ohm).
								Possibly electrode material (TiC) was
								extruded in the anvil gap. Blowout
								during decompression; all anvils were
								broken.

Table 1. Experimental summary.

Beamtime #2 (22.01.2024-27.01.2024).

We conducted 1 experiment using SD anvils and 4 experiments using WC anvils (Table 2). Figures 1 and 2 show the cell assembly designs. In all experiments we used Cr₂O₃-doped MgO octahedral as a pressure medium, cylindrical CVD BDD heater, and TiC electrodes. Temperature was measured using D-type thermocouple. Combination of Mo + Cu electrodes was used for experiment with SD anvils. A glass with composition En₅₀Cor₅₀ (En: MgSiO₃, Cor: Al₂O₃; the number represents mol %, oxide grain size: 50 nm) was used as a starting material. MgO + Pt (10:1 wt. %) oxide mixture was used as a pressure marker.

For experiment with SD anvils (M4211), the experimental procedure can be described as follows: the sample was successively compressed up to 0.5, 1.0, 1.5, 2.0, 2.5, 3.1, 3.8, 4.6, 5.5, 6.5, 7.6, 8.8 MN. The compression duration between these steps was 40-45 minutes. At each step, the sample was heated to 1000 K and then cooled to 300 K. Before heating, at 1000 K, and after cooling sample diffraction was taken and pressure was calculated. This procedure was applied to reduce the possibility of a blowout during compression. At target pressload (8.8 MN), sample was heated to 1773 K. The further heating was suspended due to limit of AC power supply. After replacement of AC to DC heating system, cell assembly was accidentally overheated, which caused blowout. The experimental procedure for experiments with WC anvils was different. In M4212, M4213 and M4215 experiments, samples were initially compressed to 2.0 MN and heated to 1000 K. After that, samples were compressed to 9.0 (M4212, M4213) and 12.0 (M4215) MN. At target pressload, samples were heated to 2300 K. After exposure at this temperature in 30-60 min, samples were taking, confirming that run products consist of bridgmanite and corundum (Figure 4). Experiment M4214 with WC anvils was failed due to blowout during compression.

Figure 4. XRD of samples after quenching in experiments M4212 (green), M4213 (wine) and

M4215 (black). The numbers above the peaks indicate the Miller indexes of bridgmanite, corundum and periclase.

Run #	Electrode	Anvils	Assembly	Maximum	Number of	Highest P,	Highest T,	remarks
	material /			pressload,	heating	Gpa	К	
	Taper			MN	cycles			
	angle							
M4211	Mo+Cu /	14mm	4.05/1.0	8.8	12	55.2	1773	At 8.8 MN 2 heating cycles:
	1°	SD						1. Using AC heating system. Due to
								power limit on a power source, heating
								was suspended at 1773 K and sample
								was cooled down
								2. Using DC heating system. Sample
								was overheated which caused blowout
M4212	1.7°	14mm	5.24/1.0	9.0	2	44.4	≈2300 (698	Kept at ≈2300 K in 30 minutes.
		WC					W)	Blowout during decompression
		TJS01						
M4213	1.5°	14mm	5.24/1.0	9.0	2	41.3	≈2300 (605	Kept at ≈2300 K in 60 minutes.
		WC					W)	Blowout during decompression
		TJS01						
M4214	1.7°	14mm	5.24/1.0	1.5	0	-	300	Blowout at 1.5 MN occurred during
		WC						compression
		TJS01						
M4215	1.7	14mm	4.05/1.0	12.0	2	45.4	≈2300 (605	Kept at ≈2300 K in 35 minutes.
		WC					W)	Blowout during decompression
		TJS01						

Table 2. Experimental summary.