Report for the Joint Use/Research of the Institute for Planetary Materials, Okayama University for FY2023

5/18/2024

Category: ☑International Joint Research	☐General Joint Research	☐ Joint Use of Facility
\square Workshop		

Name of the research project: Spin transition and thermal elastic properties of Fe-bearing CF Phase

at High Pressures and Temperatures

Principal applicant: Xinyue Zhang

Affiliated institution and department: School of Earth and Space Sciences, University of Science

and Technology of China

Collaborator

Name: Izumi Mashino

Affiliated institution and department: Okayama University

Research report:

[Research purpose]

The density and velocity profile of the mid-ocean ridge basalts (MORBs) has not been well constructed because of the lack of the elastic properties of the main minerals. Therefore, the main purpose of this research is to synthesize Fe-bearing CF phase with different compositions, which is a main phase in the MORBs, using large volume press and further determine the electronic spin and valence states of iron ions, sound velocities, and density of CF phase using combined synchrotron Mössbauer spectroscopy (SMS), inelastic X-ray scattering (IXS) and X-ray diffraction (XRD) up to 130 GPa and 2500 K. The experimental results will allow us to detect the effect of compositions on the spin transition and elastic properties of CF phase and better constrain the density and velocity profiles of the MORBs with more realistic composition in the lower mantle. These results will provide new insights into deciphering the role of subducted slabs in the seismic anomalies and material circulation.

[Actual conducted research]

a. Sample synthesis and composition/structure determining

The mixture of 30% ⁵⁷Fe enriched Fe₂O₃, MgO, and Al₂O₃ powder were used and heated in

the furnace to form the spinel with 10%FeAl₂O₄-90% MgAl₂O₄, 5%MgFe₂O₄-95%MgAl₂O₄, 10%MgFe₂O₄-90%MgAl₂O₄, and 20%MgFe₂O₄-80%MgAl₂O₄ composition as the starting materials in dry Fe-bearing system. The mixture of MgO, Al₂O₃, and Al(OH)₃ powder were also used as the starting material in the MgAl₂O₄-5 wt% H₂O and MgAl₂O₄-10 wt% H₂O system. To synthesize CF phase, high-pressure and high-temperature experiments has been performed at ~25 GPa and 1400-1900 °C for 1-6 h using the 1000-ton and 5000-ton Kawaitype multi-anvil apparatus (USSA-1000 and -5000) at the Institute for Planetary Materials, Okayama University at Misasa. The starting mixtures have been packed in Au-foil capsules for the material in 10%FeAl₂O₄-90% MgAl₂O₄ system and in Pt-foil capsules for materials in other system. Cr-doped MgO octahedral pressure media with 8-mm edges have been used for experiments in combination with tungsten carbide anvils with 3-mm truncations. The samples were first compressed to a desired press load, and then heated to 1700-1900 °C at 100 °C/min. After keeping the target temperature for the desired time, the samples were quenched by cutting the electrical power supply and decompressed to room pressure for 12 h. The recovered samples have been characterized by microfocus powder XRD for phase identification and scanning electron microscope (SEM) for chemical analysis. One additional analysis using Fourier Transform Infrared Spectroscopy (FTIR) were used to determine the water content of single-crystal CF phase synthesized in MgAl₂O₄-5 wt% H₂O system.

b. High-pressure measurements using SMS

The SMS measurement was conducted at Spring-8 for the recovered polycrystalline samples in 5%MgFe₂O₄-95%MgAl₂O₄ and 20%MgFe₂O₄-80%MgAl₂O₄ system to determine the pressure of the spin transition. The samples were pressed to get a pellet of 30 μm in thickness and loaded to two diamond anvil cells with 150-and 300-μm culets. Rhenium was used as a gasket and KCl was used as the pressure-transmitting media. The high-pressure measurement was conducted at an interval of 5-10 GPa up to 70 GPa.

[Research outcomes]

Combined with the results of SEM and SMS measurement, the ratios of Fe^{3+}/Fe of the recovered samples in $5\%MgFe_2O_4-95\%MgAl_2O_4$ and $20\%MgFe_2O_4-80\%MgAl_2O_4$ system were 0.4 and 0.7, respectively, which shows that Fe tends to exist in the form of Fe^{2+} in the CF phase. This observation is also consistent with the relatively reduced composition of MORB. As CF phase in MORB composition can contain about 30% Fe, which may strongly affect the velocity, it is necessary to study the influence of Fe^{2+} on the elastic properties of CF phase. Moreover, the spin transition of Fe^{3+} in CF phase was observed to occur at $\sim 35-40$ GPa for both two samples, which is consistent with previous results in Na, Fe-bearing samples. The

influence of spin transition on the density and elasticity is also needed to construct the velocity profile of the MORB. In addition, from the synthesis experiment in the water-bearing system, CF phase was not stable in the system of 10 wt% H₂O, while it can exist stably in the system of 5 wt% H₂O. However, FTIR results indicated that the water content in CF phase is about 150 ppm and nearly same for the samples synthesized at different temperatures. Therefore, the CF phase with MgAl₂O₄ end-member may not be the main reservoir of water in the Earth's interior.

[Collaborator's information]

	Name	Affiliated institute	Department
1	Izumi Mashino	Okayama University	Institute for Planetary
	izumi Masnino		Materials
2	Tabaaaki Iakii	Okayama University	Institute for Planetary
	Takayuki Ishii		Materials
3	Talaghi Vaghina	Okayama University	Institute for Planetary
	Takashi Yoshino		Materials